Spring 2017 MATH5012

Real Analysis II

Solution to Exercise 4

(1) Let w, be the volume of the unit ball in R"* s0 wy = 2, ws = m, w3 = 4/3,
etc. Show that
1
Wy, = an_l/ (1-— ZBQ)(n_l)/QdSB,
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and deduce the formula
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Look up the definition of the Gamma function yourself. This is supposed a
problem on Fubini’s theorem in advanced calculus.

Solution. Note that the Gamma function is defined by

['(z) = / t"te7tdt, x € (0,00).
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We calculate [ in two ways. First, by Fubini’s theorem,
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On the other hand, expressing I in the polar coordinates,
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and the results follows.

(2) Use Fubini’s theorem and the relation

1 o
:/ e dt (x>0)
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to prove that

Solution. Put f(z,y) = sinze . Observe that f is £?-measurable and
|f(x,y)| < e " whose iterated integral over [0,00)? is finite. f € L?. By

Fubini’s theorem,
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But if A > 1,
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by the dominated convergence theorem,
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This integral can also be evaluated using residues in complex analysis.

(3) Complete the following proof of Hardy’s inequality (chapter 3, Exercise 14 in
[R1]): Suppose f >0 on (0,00), f € LP, 1 < p < 00, and

:i/;f(t)dt

Write xF'(x / fO)t*t™*dt, where 0 < a < 1/q, use Holder’s inequality

to get an upper bound for F(z)?, and integrate to obtain

/0 TP (a) dr < (1— ag) P (ap) ! /0 ) di

Show that the best choice of « yields

/O T Fr(e) e < (ﬁ)p /O e dt.

Solution. If 0 < a < %.
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0
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Thus we have

FP(z) < (1 —aq)t Pzt /fp t)tPdt.



Integrating gives

/OO FP(x)dr < (1 —aq)'™? /OO gimor /90 fP()tPdtdx
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To minimize the constant, we would like to choose a smallest a. A simple

computation shows that
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Obviously, if 0 < a < et
(1= ag) (ap) " <0
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and if — < a <,
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It follows that (1 — aq)'P(ap)~! attains minimum at o = -1 whose value

p+q

p
is ¢f = (p%) and consequently,

/OOO FP(z)de < (ﬁ)p/f F2(t)dt.



(4) Prove the following analogue of Minkowski’s inequality, for f > 0:
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Supply the required hypotheses.
Solution. Suppose that p > 1, u, A are o-finite. The case p = 1 is elemen-

tary. We assume, since otherwise trivial, that
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Put

and define the linear functional A on L9(u) by

Mz/WM,WGMW-
To show that A is bounded, we note

IMM=//ﬂLM%MM@M@
=//N%M%MW@M@ ( Fubini )

s/(/ﬁmwwmfwmw&@ ( Holder )
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= Mllglly < oc.

By duality, we have

1Pl = [[Allop = sup[Ag] <M,
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done.

Many problems are taken from chapter 8, [R1].



