Spring 2017 MATH5012

Real Analysis II

Solution to Exercise 4

(1) Let ω_n be the volume of the unit ball in \mathbb{R}^{n+1} , so $\omega_1 = 2$, $\omega_2 = \pi$, $\omega_3 = 4/3\pi$, etc. Show that

$$\omega_n = 2\omega_{n-1} \int_0^1 (1 - x^2)^{(n-1)/2} dx,$$

and deduce the formula

$$\omega_n = \frac{\pi^{n/2}}{\Gamma(n/2+1)} \ .$$

Look up the definition of the Gamma function yourself. This is supposed a problem on Fubini's theorem in advanced calculus.

Solution. Note that the Gamma function is defined by

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt, x \in (0, \infty).$$

Let

$$I = \int_{\mathbb{R}^n} e^{-|x|^2} dx_1 \cdots dx_n.$$

We calculate I in two ways. First, by Fubini's theorem,

$$I = \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} e^{-x_1^2} \cdots e^{-x_n^2} dx_1 \cdots dx_n = \left(\int_{-\infty}^{\infty} e^{-t^2} dt \right)^n = \left(\sqrt{\pi} \right)^n.$$

1

On the other hand, expressing I in the polar coordinates,

$$I = \int_{S_1} \int_0^\infty e^{-r^2} r^{n-1} dr d\theta$$
$$= \frac{|S_1|}{2} \int_0^\infty e^{-t} t^{n/2-1} dt$$
$$= \frac{n|B_1|}{2} \times \Gamma\left(\frac{n}{2}\right)$$
$$= |B_1| \Gamma\left(1 + \frac{n}{2}\right),$$

and the results follows.

(2) Use Fubini's theorem and the relation

$$\frac{1}{x} = \int_0^\infty e^{-xt} dt \quad (x > 0)$$

to prove that

$$\lim_{A \to \infty} \int_0^A \frac{\sin x}{x} \, dx = \frac{\pi}{2}.$$

Solution. Put $f(x,y) = \sin x e^{-xt}$. Observe that f is \mathcal{L}^2 -measurable and $|f(x,y)| \leq e^{-xt}$ whose iterated integral over $[0,\infty)^2$ is finite. $f \in L^2$. By Fubini's theorem,

$$\int_0^A \frac{\sin x}{x} dx = \int_0^A \int_0^\infty \sin x e^{-xt} dt dx$$

$$= \int_0^\infty \int_0^A \sin x e^{-xt} dx dt$$

$$= \int_0^\infty \frac{-t \sin A e^{-At}}{t^2 + 1} - \frac{\cos A e^{-At}}{t^2 + 1} + \frac{1}{t^2 + 1} dt$$

But if $A \ge 1$,

$$\left| \frac{-t\sin Ae^{-At}}{t^2 + 1} - \frac{\cos Ae^{-At}}{t^2 + 1} \right| \le 2e^{-At} \le 2e^{-t};$$

by the dominated convergence theorem,

$$\lim_{A \to \infty} \int_0^\infty \frac{-t \sin A e^{-At}}{t^2 + 1} - \frac{\cos A e^{-At}}{t^2 + 1} + \frac{1}{t^2 + 1} dt = \int_0^\infty \frac{1}{t^2 + 1} dt = \frac{\pi}{2}.$$

This integral can also be evaluated using residues in complex analysis.

(3) Complete the following proof of Hardy's inequality (chapter 3, Exercise 14 in [R1]): Suppose $f \geq 0$ on $(0, \infty)$, $f \in L^p$, 1 , and

$$F(x) = \frac{1}{x} \int_0^x f(t) dt.$$

Write $xF(x) = \int_0^x f(t)t^{\alpha}t^{-\alpha} dt$, where $0 < \alpha < 1/q$, use Hölder's inequality to get an upper bound for $F(x)^p$, and integrate to obtain

$$\int_0^\infty F^p(x) \, dx \le (1 - \alpha q)^{1-p} (\alpha p)^{-1} \int_0^\infty f^p(t) \, dt.$$

Show that the best choice of α yields

$$\int_0^\infty F^p(x) \, dx \le \left(\frac{p}{p-1}\right)^p \int_0^\infty f^p(t) \, dt.$$

Solution. If $0 < \alpha < \frac{1}{q}$.

$$xF(x) = \int_0^x f(t)t^{\alpha}t^{-\alpha}dt$$

$$\leq \left(\int_0^x f^p(t)t^{\alpha p}dt\right)^{\frac{1}{p}} \left(\int_0^x t^{-\alpha q}dt\right)^{\frac{1}{q}}$$

$$= \left(\int_0^x f^p(t)t^{\alpha p}dt\right)^{\frac{1}{p}} \left(\frac{x^{-\alpha q+1}}{-\alpha q+1}\right)^{\frac{1}{q}}.$$

Thus we have

$$F^{p}(x) \le (1 - \alpha q)^{1-p} x^{-1-\alpha p} \int_{0}^{x} f^{p}(t) t^{\alpha p} dt.$$

Integrating gives

$$\int_0^\infty F^p(x)dx \le (1 - \alpha q)^{1-p} \int_0^\infty x^{-1-\alpha p} \int_0^x f^p(t)t^{\alpha p}dtdx$$

$$= (1 - \alpha q)^{1-p} \int_0^\infty \int_0^\infty \chi_{(0,x)}(t)x^{-1-\alpha p} f^p(t)t^{\alpha p}dxdt \text{ (applied Fubini's)}$$

$$= (1 - \alpha q)^{1-p} \int_0^\infty f^p(t)t^{\alpha p} \int_t^\infty x^{-1-\alpha p}dxdt$$

$$= (1 - \alpha q)^{1-p} (\alpha p)^{-1} \int_0^\infty f^p(t)dt$$

To minimize the constant, we would like to choose a smallest α . A simple computation shows that

$$\frac{d}{d\alpha}(1-\alpha q)^{1-p}(\alpha p)^{-1} = \frac{-p(1-\alpha q)^{p-1} + \alpha p^2(1-\alpha q)^{p-2}}{\alpha^2 p^2(1-\alpha q)^{2p-2}} = \frac{\alpha(p+q)-1}{\alpha^2 p(1-\alpha q)^p}$$

and

$$\frac{d}{d\alpha}(1 - \alpha q)^{1-p}(\alpha p)^{-1} \text{ iff } \alpha = \frac{1}{p+q}.$$

Obviously, if $0 < \alpha < \frac{1}{p+q}$,

$$\frac{d}{d\alpha}(1 - \alpha q)^{1-p}(\alpha p)^{-1} < 0$$

and if $\frac{1}{p+q} < \alpha < \frac{1}{q}$,

$$\frac{d}{d\alpha}(1-\alpha q)^{1-p}(\alpha p)^{-1} > 0.$$

It follows that $(1 - \alpha q)^{1-p}(\alpha p)^{-1}$ attains minimum at $\alpha = \frac{1}{p+q}$ whose value is $q^p = \left(\frac{p}{p-1}\right)^p$ and consequently,

$$\int_0^\infty F^p(x)dx \le \left(\frac{p}{p-1}\right)^p \int_0^\infty f^p(t)dt.$$

(4) Prove the following analogue of Minkowski's inequality, for $f \geq 0$:

$$\left\{ \int \left[\int f(x,y) \, d\lambda(y) \right]^p \, d\mu(x) \right\}^{\frac{1}{p}} \leq \int \left[\int f^p(x,y) \, d\mu(x) \right]^{\frac{1}{p}} \, d\lambda(y).$$

Supply the required hypotheses.

Solution. Suppose that p > 1, μ , λ are σ -finite. The case p = 1 is elementary. We assume, since otherwise trivial, that

$$M = \int \left(\int f^{p}(x, y) d\mu(x) \right)^{\frac{1}{p}} d\lambda(y) < \infty.$$

Put

$$h(x) = \int f(x, y) d\lambda(y)$$

and define the linear functional Λ on $L^q(\mu)$ by

$$\Lambda g = \int hg d\mu \ , \quad \forall g \in L^q(\mu).$$

To show that Λ is bounded, we note

$$\begin{split} |\Lambda(g)| &= \int \int f(x,y) |g(x)| d\lambda(y) d\mu(x) \\ &= \int \int f(x,y) |g(x)| d\mu(x) d\lambda(y) \quad (\text{ Fubini }) \\ &\leq \int \left(\int f^p(x,y) d\mu(x) \right)^{\frac{1}{p}} \|g\|_{L^q(\mu)} d\lambda(y) \quad (\text{ H\"older }) \\ &= \|g\|_q \int \left(\int f^p(x,y) d\mu(x) \right)^{\frac{1}{p}} d\lambda(y) \\ &= M \|g\|_q < \infty. \end{split}$$

By duality, we have

$$||h||_p = ||\Lambda||_{op} = \sup_{\{g, ||g||_q = 1\}} |\Lambda g| \le M$$
,

done.

Many problems are taken from chapter 8, [R1].